Key issues in the design and properties modulation of polymeric materials

for rain erosion protection systems of wind turbine blades
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Analytical and numerical models are commonly
used to identify suitable top coatings and
composite substrate combinations based on their
potential stress reduction on the surface and
interfaces under rain droplet impingement and also
for lifetime erosion damage prediction. The
numerical models known are limited to a linear
elastic response of the polymer subjected to drop
impact loads and not consider the multilayer
interfaces contact failure. In this research, the
polymeric mechanical models are used within a
novel and versatile multi-parametric approach
based on the viscoelastic material characterization.
Moreover, the appropriate definition of  the
Cohesive Zone Modelling (CZM) allowed one to
account for the interface adhesion and hence to
optimize manufacturing and coating processing.

Liquid impact phenomena

affecting erosion failure

The analysis of erosion caused by rain droplets
shows that the damage is in fact a 3D dynamic
event resulting in the propagation of shock waves.
As the water droplet impinges on the surface, a
longitudinal compressional normal stress wave front
in the top coating further advances towards the
coating-substrate interface, where a portion of the
stress wave is reflected back into the coating with a
different amplitude (depending on the relative
material acoustic impedance) and vyields a
transverse shear wave. The remaining part is
transmitted to the substrate. The impact gives rise
to a third wave due to the water droplet
deformation itself, called the Rayleigh wave, which is
confined to the surface of the top coating.
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Two main different types of erosion failure are
mainly observed in used Rain Erosion Testing
coupons: pits and cracks that progress with mass
loss caused by direct impact and stress on surface
and delamination indirectly caused by the interface
stresses [1] .
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Versatile computational

framework: PGD

In a fully conventional 3D FEM simulation, an
exhaustive analysis would require thousands of
simulations depending on the geometry, material
configuration, impact velocity, droplet size, ...
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Proper Generalized Decomposition (PGD) is
alternatively implemented by the user depending
on the modelling parameters to be analyzed as
objective functions. We consider the in-plane-out-
of-plane decomposition for solving the 3D elastic
displacement field U = (u, v, w), reads:

u(x,y,z)
v(x,y,z) | =
w(x,y, z)

U(x,y,z) = 21X (x,y) o Z(2)

Vectors X! are the functions in the plane (x,y) and
Z! are the functions involving the thickness (z). The
PGD method consists then of introducing unknown
fields as extra coordinates in addition to the usual
coordinates such as space and time. that can be
post-processed at will for various purposes, such as
parametric optimization on this research [2].
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Case: Material Design Factors

The waterdrop impacts on rotor blades are highly
transient events. A well known method for the
modeling of LEP viscoelastic behavior is the
Havriliak-Negami Model:
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In order to identify suitable coating and substrate
combinations, Maximum Normal Stress evolution is
computed with the PGD in different layers with the
LEP impedance for a parameter range for Ey E, ,
and t on the frequencies of interest:

u(x,y,z,w,Ey, Ex, T)

N ) ) )
> Zizl"%x, y) 0 Zi(2) o Wi(w) o Ey(Eo) © EL(Es) o TE(7)

This result allows one to match the acoustic
material properties in order to minimize the
stress reflections and transmissions through the
laminate thickness.
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Case: LEP interface failure

The mechanical characterization of a multilayer LEP
configuration was quantified. Pull-off testing and
peeling testing demonstrated the improved
interphase coating—laminate adhesion response
when a primer layer was included. Treated as the
input parameters for a Cohesive Zone Modelling
algorithm, accounting for the fracture energy, Ga
needed for delamination. In all the simulations, it is
related as a parameter value the normal traction, o,
to the normal opening displacement, 6, across the
crack surface since fracture was assumed to be
predominantly via a Mode | (tensile) failure.
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